Extensions 1→N→G→Q→1 with N=C22 and Q=D4xC15

Direct product G=NxQ with N=C22 and Q=D4xC15
dρLabelID
D4xC2xC30240D4xC2xC30480,1181

Semidirect products G=N:Q with N=C22 and Q=D4xC15
extensionφ:Q→Aut NdρLabelID
C22:(D4xC15) = C5xD4xA4φ: D4xC15/C5xD4C3 ⊆ Aut C22606C2^2:(D4xC15)480,1127
C22:2(D4xC15) = C15xC4:D4φ: D4xC15/C60C2 ⊆ Aut C22240C2^2:2(D4xC15)480,926
C22:3(D4xC15) = C15xC22wrC2φ: D4xC15/C2xC30C2 ⊆ Aut C22120C2^2:3(D4xC15)480,925

Non-split extensions G=N.Q with N=C22 and Q=D4xC15
extensionφ:Q→Aut NdρLabelID
C22.1(D4xC15) = C15xC4oD8φ: D4xC15/C60C2 ⊆ Aut C222402C2^2.1(D4xC15)480,940
C22.2(D4xC15) = C15xC23:C4φ: D4xC15/C2xC30C2 ⊆ Aut C221204C2^2.2(D4xC15)480,202
C22.3(D4xC15) = C15xC4wrC2φ: D4xC15/C2xC30C2 ⊆ Aut C221202C2^2.3(D4xC15)480,207
C22.4(D4xC15) = C15xC22.D4φ: D4xC15/C2xC30C2 ⊆ Aut C22240C2^2.4(D4xC15)480,928
C22.5(D4xC15) = C15xC8:C22φ: D4xC15/C2xC30C2 ⊆ Aut C221204C2^2.5(D4xC15)480,941
C22.6(D4xC15) = C15xC8.C22φ: D4xC15/C2xC30C2 ⊆ Aut C222404C2^2.6(D4xC15)480,942
C22.7(D4xC15) = C15xC2.C42central extension (φ=1)480C2^2.7(D4xC15)480,198
C22.8(D4xC15) = C15xD4:C4central extension (φ=1)240C2^2.8(D4xC15)480,205
C22.9(D4xC15) = C15xQ8:C4central extension (φ=1)480C2^2.9(D4xC15)480,206
C22.10(D4xC15) = C15xC4.Q8central extension (φ=1)480C2^2.10(D4xC15)480,209
C22.11(D4xC15) = C15xC2.D8central extension (φ=1)480C2^2.11(D4xC15)480,210
C22.12(D4xC15) = C22:C4xC30central extension (φ=1)240C2^2.12(D4xC15)480,920
C22.13(D4xC15) = C4:C4xC30central extension (φ=1)480C2^2.13(D4xC15)480,921
C22.14(D4xC15) = D8xC30central extension (φ=1)240C2^2.14(D4xC15)480,937
C22.15(D4xC15) = SD16xC30central extension (φ=1)240C2^2.15(D4xC15)480,938
C22.16(D4xC15) = Q16xC30central extension (φ=1)480C2^2.16(D4xC15)480,939

׿
x
:
Z
F
o
wr
Q
<